DEPARTMENT OF HEALTH SERVICES DIVISION OF DRINKING WATER AND ENVIRONMENTAL MANAGEMENT TECHNICAL OPERATIONS SECTION RECYCLED WATER UNIT 1180 Eugenia Place, Suite 200 CARPINTERIA, CALIFORNIA 93013 (805) 566-1326 FAX (805) 745-8196 # STATE OF CALIFORNIA DIVISION OF DRINKING WATER AND ENVIRONMENTAL MANAGEMENT #### TREATMENT TECHNOLOGY REPORT FOR RECYCLED WATER September 2004 This document has been developed to serve as a reference source for those seeking information concerning technologies that have been recognized by the California State Department of Health Services (CDHS) as being acceptable for compliance with treatment requirements of the California Recycled Water Criteria. This is a "living" document that will be updated periodically as needed. Readers who find errors or omissions should contact Jeff Stone of the SDHS Recycled Water Unit at jstone1@dhs.ca.gov. # STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES DIVISION OF DRINKING WATER AND #### ENVIRONMENTAL MANAGEMENT #### TREATMENT TECHNOLOGY REPORT FOR RECYCLED WATER September 2004 #### TABLE OF CONTENTS - 1. INTRODUCTION - 2. GENERAL GUIDANCE - 3. FILTRATION TECHNOLOGIES: Granular Media Type Filters DynaSand (Parkson Corp.) SuperSand (Waterlink Separations, Inc.) Technasand (Westech Engineering) Hydro-Clear (U.S. Filter-Zimpro) ABW, Infilco-Degremont AquaABF (Aqua Aerobics Systems, Inc. Tetra-Denit. (Tetra Technologies, Inc.) Centra-Flo (Applied Process Technology) Fluidsand (Fluidyne, Corp.) Hydrasand (Andritz Ruthner, Inc.) Strata-Sand (Ashbrook Corp.) Volcano - not yet accepted Other Media Type Filters Fuzzy Filter (Schreiber LLC) Membrane Technologies #### ZENON - -Cycle-let (Zenon Environmental, Inc.) - -ZeeWeed/Zenogem - -ZeeWeed 1000 UF #### U.S. Filter/Memcor - -CMF (0.2 micron-PP and 0.1 micron-PVDF) - -CMF-Submerged (0.2 micron-PP and 0.1 micron-PVDF) #### U.S. Filter/Jet Tech -Jet Tech Products-Memjettm PALL Corporation Mitsubishi Kubota Ionics -Norit X-Flow #### Cloth Filters Aqua-Aerobics - rotating disk -102 needle felt fabric -PA-13 nylon pile fabric Aqua-Aerobics - AquaDiamondtm U.S. Filter-Kruger Products - Hydrotech Polyester media filter #### 4. DISINFECTION TECHNOLOGIES Trojan Technologies PCI-Wedeco Wedeco-Ideal Horizons Aquionics Ultraguard (Service Systems) Aguaray (Infilco-Degremont) UltraTech #### 5. APPENDIX 'A' - California Department of Health Services Requirements for Demonstration of Reduction of Virus and Bacteria by Filtration and Disinfection ## State of California Department of Health Services Division of Drinking Water #### Treatment Technology Report for Recycled Water #### SEPTEMBER 2004 #### 1. INTRODUCTION The purpose of this document is to provide general reference information concerning those treatment technologies that are being utilized for meeting the filtration performance and disinfection requirements for compliance with the California Recycled Water Criteria (Title 22, et. seq.). The information contained herein was generated from a review of files and correspondence of the California State Department of Health Services (CDHS), and discussions with Field Operations Branch District Staff, SWRCB Staff, industry representatives and manufacturers. All referenced reports, letters and other documents are on file with the Department's Recycled Water Unit. This reference document may not reflect all treatment technologies in place in California, but will be updated as additional information is obtained. The California Water Recycling Criteria (adopted December 2000) define Disinfected Tertiary Recycled Water as a wastewater, which has been oxidized and meets the following: - A. Has been coagulated* and passed through natural undisturbed soils or a bed of filter media pursuant to the following: - 1. At a rate that does not exceed 5 GPM/ft² in mono, dual or mixed media gravity or pressure filtration systems, or does not exceed 2 GPM/ft² in traveling bridge automatic backwash filters; and - 2. The turbidity does not exceed any of the following; a daily average of 2 NTU, 5 NTU more than 5% of the time within a 24-hour period, and 10 NTU at any time. *Note: Coagulation may be waived if the filter effluent does not exceed 2 NTU, the filter influent is continuously measured, the filter influent turbidity does not exceed 5 NTU, and automatically activated chemical addition or diversion facilities are provided in the event filter effluent turbidity exceeds 5 NTU. B. Has been passed through a micro., nano., or R.O. membrane following which the turbidity does not exceed any of the following: 0.2 NTU more than 5% of the time within a 24-hour period and 0.5 NTU at any time. AND - C. Has been disinfected by either: - 1. A chlorine disinfection process that provides a CT of 450 mg-min/l with a modal contact time of not less than 90 minutes based on peak dry weather flow, or - 2. A disinfection process that, when combined with filtration, has been demonstrated to achieve 5-log inactivation of virus. #### 2. GENERAL GUIDANCE The following guidance is consistent with the Water Recycling Criteria and will serve as the basis for CDHS review and acceptance of treatment technologies for compliance with the filtration and disinfection requirements of the Criteria. #### FILTRATION Filters meeting the definition of "filtered wastewater" under Section 60301.320 (a&b) and those demonstrating equivalency under Section 60320.5 ("Other Methods of Treatment") outlined in the Water Recycling Criteria are allowed the option of either disinfection approach outlined in Section 60301.230 without additional restrictions or requirements. The Department considers a properly filtered and disinfected recycled water meeting the turbidity performance and coliform requirements outlined in the criteria to be essentially pathogen As noted by Asano et al. (1), "To achieve efficient virus inactivation in tertiary treatment, two major removal or criteria must be met: 1) the effluent must be low in suspended solids and turbidity prior to disinfection to prevent shielding of viruses and chlorine demand, and 2) sufficient disinfectant must be applied to the wastewater." Treatment requirements determined necessary to meet the disinfected tertiary - 2.2 criteria outlined in the Criteria include media filtration to reduce turbidity to less than a daily average of 2 NTU or membrane filtration to reduce turbidity to less than a daily average of 0.2 NTU, and disinfection to ensure a minimum CT of 450 milligram-minutes per liter at all times. This treatment scheme is intended to remove solids (including some pathogens) and properly prepare the water for effective disinfection in order to achieve an approximately five-log reduction of virus. However, with respect to many existing technologies, there has yet to be a demonstrated correlation between turbidity and pathogen concentration. The current turbidity performance standards for media and membrane filtration are based on achievable turbidity performance and do not assure any specific minimum level of pathogen removal. This is a recognized issue in the regulations that needs to be addressed by the Department and the water recycling industry. Since the Pomona Virus Study $^{(2)}$, biological treatment has introduced additional variables into the picture, as the type of biological treatment can impact the particle size distribution and downstream filter and disinfection performance. However, the integration of these processes, into a process train, are not well understood at this time and must be addressed by industry and regulators. Nevertheless, it remains the intent of the Department to produce an essentially pathogen free effluent by maintaining a 5-log virus removal/inactivation barrier through filtration and disinfection. Additional information concerning treatment technologies may be found in Appendix A (California Department of Health Services-Reduction of Virus and Bacteria by Filtration and Disinfection, October 2001). It must be recognized that the Title 22 filtration performance requirements, as outlined under Section 60301.320, must be reliably met by all filtration technologies. It is suggested that recycled water producers develop and implement plant performance optimization plans and make a reasonable effort to minimize effluent turbidity levels. Furthermore, all treatment facilities should be operated in accordance with the manufacturer's recommendations and specific conditions of approval developed by CDHS. ^{1.} Asano, T.; Tchobanoglous, G.; and Cooper, R.C (1984), "Significance of Coagulation-Flocculation and Filtration Operations in Wastewater Reclamation and reuse", in Symposium Proceedings, The Future of Water Reuse, Water Reuse Symposium III, San Diego, California, August 26-31, 1984. American Waterworks Association Research Foundation. ^{2.} County Sanitation Districts of Los Angeles County (1977), "Pomona Virus Study, Final Report", Prepared for Calif. State Water Resources Control Board, Sacramento, Calif., and USEPA, Washington, D.C #### UV DISINFECTION UV Disinfection Guidelines were first published in 1993 by the National Water Research Institute (NWRI). Since that time, the field of ultraviolet disinfection has taken great forward. As a result of the progress made in understanding the UV disinfection process, the CDHS and the NWRI agreed that it was time to revise and update the guidelines. NWRI and the American Water Works Association Research Foundation (AWWARF) their resources in order to revise the original guidelines, which now cover water recycling and drinking water UV disinfection applications. As a result of these efforts the "Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse" were published by NWRI/AWWARF in December 2000 and revised as a Second Edition dated May 2003. CDHS endorses the May 2003 Guidelines and refers to them when evaluating UV disinfection proposals. One major recommendation of the guidelines is that all UV equipment (including
previously approved equipment) be tested and validated under these new guidelines before being accepted by the Department. systems approved under earlier quidelines, documentation of compliance with the May 2003 guidelines should be provided when permits issued by the Regional Water Quality Control Boards come up for renewal. It is believed that existing UV disinfection systems that were properly designed should comply with the elements of the revised guidelines. The implication of the recommendations contained in the revised guidelines is that even the horizontal low-pressure low intensity UV systems must be validated before they are accepted for a UV disinfection application. Previously accepted UV technologies that were considered to be nonconforming under the 1993 guidelines will also have to be retested using the recommended testing procedure. The UV technologies listed herein include a note indicating whether compliance with the most recent 2003 guidelines has been demonstrated by the manufacturer. Agencies that are in the stages of planning or early design have the most flexibility and should be able to require completion of UV validation testing before they accept delivery of the UV equipment. Therefore, the agency can plan and begin the design work around a given UV system, but not allow delivery of equipment until validation testing is completed. This will allow comparison of the UV reactor design to the validation test results in order to ensure adequate sizing and performance of the UV system. This could be done as part of design review process, i.e., while the design is not yet complete. If the design process has been completed and the contract for equipment has been signed, there will be fewer recourses for the utility. However, the utility can require a demonstration of performance or performance guarantee on the equipment for their own protection. It is important to note that these are only "guidelines" and are therefore not limiting with respect to alternative approaches a manufacturer or project proponent may propose for consideration on a case-by-case basis. It is possible however that future regulations may be based on these guidelines. (Continued on next page) #### 3. FILTRATION TECHNOLOGIES The following technologies have demonstrated their ability to meet the performance objectives of Title 22. The "STATUS" designation gives an indication as to which technologies have been given formal Departmental recognition. For projects proposing a technology which is not listed herein or whose "STATUS" is unknown, a review of the proposal should be conducted by the Recycled Water Unit prior to acceptance. NOTE: The Department strongly recommends that when utilities consider a particular filtration technology, they carefully evaluate its appropriateness for their particular water being treated. The net production capacity of some technologies are especially sensitive to assumptions about how much flow can be processed per operating unit or module, and assuming a flow rate that is too high can result in a filtration plant that is too small to meet system capacity requirements. Depending on the treatment process being employed, consideration must be given to solids loading on the filter medium which can have a significant effect on loading/flux rate, TMP, filter run times, backwashing efficiency and other O&M and design elements. These concerns are best addressed by piloting the treatment process being considered to ensure it will meet the required treatment criteria outlined in the Water Recycling Criteria. #### Granular Media Type Filters ## Dynasand Parkson Corporation Status--Accepted 2727 N.W. 62nd Street Fort Lauderdale, Florida 33340-8399 (305) 974-6610 Description: Upflow deep bed continuous backwash Media configuration: | Media Depth | Effective | Uniformity | |-------------|-----------|-------------| | (inches) | Size (mm) | Coefficient | | sand: 40 | 1.30 | 1.50 | #### Acceptance / Reference: - -Listed in the CDHS Direct Filtration Guidelines (1988) - -Conditional acceptance letter dated 12/1/86 from CDHS - -Conditions of acceptance include: 1) media design specs. as noted above, 2) complete recycling of filter medium every three to four hours. -Letter dated 4/23/97 from the San Francisco District Office to the Sewerage Agency of South Marin -Memo dated 7/18/97 from Mike Finn (CDHS) re: two performance studies (S.F. Bureau of water Pollution Control and Sewerage Agency of South Marin) Comments: Classified as direct filtration. Installations: Sewerage Agency of Southern Marin (Evaluation outlined in a Pilot Test Final Report for the Agency dated June 1989); San Francisco-Bureau of Water Pollution Control has a pilot unit at the Oceanside WWTP, and others. ## WATERLINK SuperSand Waterlink Separations, Inc. Status--Accepted 29850 N. Skokie Hwy. (U.S. 41) Lake Bluff, Illinois 60044-1192 (847) 473-3700 Description: Upflow deep bed continuous backwash Media configuration: | Media Depth (inches) | Effective
Size (mm) | Uniformity
Coefficient | |----------------------|------------------------|---------------------------| | sand: 40 | 1.30 | 1.50 | #### Acceptance / Reference: -Conditional acceptance letter dated 1/14/2000 from CDHS. -Conditions of acceptance include: 1) media design specs. as noted above, 2) complete recycling of filter medium every three to four hours. -Note: Waterlink holds the patents for the design of the filter approved as the "DynaSand" marketed by Parkson Corp. under licensing agreements. Master file contains all documentation. Comments: Classified as direct filtration. Installations: Proposed for Delta Diablo Sanitation District (Pittsburg, CA), Coachella Valley and Escondido. #### Status--Accepted ## WESTECH TECHNASAND Westech Engineering, Inc. 3625 South West Temple Salt Lake City, Utah 84119-0068 (801) 265-1000 Description: Upflow deep bed continuous backwash Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient sand: 40 1.30 1.50 #### Acceptance / Reference: -Conditional acceptance letter dated 4/5/2002 from CDHS. -Conditions of acceptance include: 1) media design specs. as noted above, 2) complete recycling of filter medium every three to four hours. -Note: Mftr. has indicated they will warrant the Technasand Filter to meet Title 22 filtration requirements. Same principle as the Parkson Dynasand. Master file contains all documentation. Comments: Classified as direct filtration. Installations: Proposed for Carmel Valley Ranch. Hydro-Clear Status--Accepted U.S. Filter Zimpro Environmental, Inc. 301 W. Military Rd. Rothschild, WI 54474 (715) 359-7211 Description: Shallow pulsed bed filter Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient sand: 10-12 0.45 1.50 #### Acceptance / Reference: - -Listed in the CDHS Direct Filtration Guidelines (1988) - -Conditional acceptance letter dated 11/17/81 from CDHS. - -Conditions of acceptance include: 1) minimum bed depth of 10-inches of sand with E.S. of 45 mm, 4) at least 6 minutes between pulses and no more than 25 pulses per filter run. -U.C. Davis Evaluation Report; "Evaluation of the Pulsed- Bed Filter For Wastewater Reclamation in California", 1981. Comments: Classified as direct filtration Installations: Moulton Niquel WD, San Luis Obispo, San Clemente, Rancho Murrieta, Fallbrook, and others. #### Infilco-Degremont, Inc. Automatic Backwash (ABW) Status--Accepted P. O. Box 71390 Richmond, Va 23255-1390 (804) 756-7697 Description: shallow bed, traveling bridge Media configuration: | Media Depth | Effective | Uniformity | |-------------|-----------|-------------| | (inches) | Size (mm) | Coefficient | | sand: 11 | 0.55 | 1.50 | #### Acceptance / Reference: -Listed in the CDHS Direct Filtration Guidelines (1988) -U.C. Davis Evaluation Report; "Evaluation of the Enelco ABW Automatic Backwash Filter For Wastewater Reclamation in California", dated November 1988. Comments: Loading rate limited to 2 gpm/ft2; Max. influent turbidity <10 NTU. Installations: Sacramento County, Sepulveda Water Reclamation, Folsom WWTP, Victor Valley WWRP, LA City-Tillman WRP, Shasta Lake WWTP, and others. #### Aqua-Aerobic Systems, Inc. Automatic backwash filter (AquaABF) Status--Accepted P.O. Box 2026 6306 N. Alpine Road Rockford, IL 61111 (815) 654-2501 Description: Shallow bed traveling bridge Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient sand: 11 0.55 1.50 Acceptance / Reference: -Listed in the CDHS Direct Filtration Guidelines (1988) -U.C. Davis Evaluation Report entitled "Evaluation of the Aqua-Aerobic Automatic Backwash Filter For Wastewater Reclamation in California" dated July 1986. Comments: Loading rate limited to 2 gpm/ft²; Max. influent turbidity <10 NTU. Installations: None known #### Tetra Technologies, Inc. Tetra-Denit. Status--Accepted 1628 Tiburon Blvd. Tiburon, CA 94920 (1-800-364-4617) Description: Tetra Deep Bed-Denitrification Filters Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient Silica sand: 48-72 2.2 1.35 Acceptance / Reference: -Conditional acceptance letter signed by M. Kiado (CDHS) re: LADWP dated 3/17/92 -Letter dated 10/6/97 from Parsons Engineering Science regarding LA-Glendale Water Reclamation Plant pilot study. Comments: Mono-media granular sand; 4-6 foot depth; intended for direct filtration with chemical addition. Installations: City of Los Angeles (Glendale WWTP), Lake Arrowhead CSD, Padre Dam MWD, Scotts Valley WD. ## Centra-flo Applied Process Technology Status--Accepted 35 Wellington Lane Conroe, Texas 77304 (409) 539-4099 Description: Centra-flo Gravity Sand Filter Downflow Continuous Wash Filter Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient (graded) sand: 40 0.5 - 3.0 1.50 Acceptance: CDHS letter dated January 6, 1999 for landscape irrigation Comments: Pilot testing conducted at Union Sanitary District's Alvarado WWTP (1994);
loading rate up to 4.4 GPM/ft^2 . Installations: Tejon Ranch Development '99 (I-5 @ Tejon Pass) #### Fluidsand #### Fluidyne Corporation Status--Accepted 2816 West First Street Cedar Falls, IA 50613 (319) 266-9967 Description: Fluidyne Fluidsand Filter Upflow Continuous Backwash Filter #### Media configuration: | Media Dept | th Effective | Uniformity | |-----------------|--------------|-------------| | (inches) | Size (mm) | Coefficient | | | (graded) | | | silica sand: 40 | 0.8 - 1.0 | 1.6 | #### Acceptance / Reference: -Conditional acceptance letter dated 5/03/2000 from CDHS. -Conditions of acceptance include: 1) media design specs. as noted above, 2) complete recycling of filter medium every three to four hours. -Engineering Report dated June 9, 1997 submitted by Questa Engrg. for the Canada Woods Reclamation Facility. Comments: Classified as direct filtration. Designed for waters containing TSS up to 20 mg/l (per manufacturer); Performance data submitted by the manufacturer demonstrates this technology's ability to comply with the turbidity performance standards. Design and operation conceptually similar to Dynasand. Installations: Tenaya Lodge located in Fish Camp (Evaluated in a "facilities Review" report by Carollo Engineers dated September 1990). Canada Woods Development ('99) in the Monterey area (without SDHS approval). Castanoa Ranch ('99) in San Mateo County. ### Hydrasand Status--Accepted Andritz Ruthner, Inc. 1010 Commercial Blvd. So. Arlington, Texas 76017 (817) 465-5611 Description: Upflow, continuous wash filter #### Acceptance / References: -Conditional acceptance letter dated June 23, 2000 from CDHS. -Conditions of acceptance include: 1) media design specs. as noted above, 2) complete recycling of filter medium every three to four hours. -Report available entitled "Microbial Assessment of the Lanai Auxiliary Reclamation Facility to Produce Wastewater Effluent for Unrestricted, Non-potable Reuse" dated October 1998. Comments: Mftr. has indicated they will warrant the Hydrasand Filter to meet Title 22 requirements. Same principle as the Parkson DynaSand. Installations: None in California (proposed for City of Corona), installed in Trumansburg NY and Lanai City, HI. #### Strata-Sand Ashbrook Corporation Status--Accepted 11600 East Hardy Houston, Texas 77093-1098 (281) 449-1324 Description: Strata-Sand Gravity Sand Filter Downflow Continuous Wash Filter Media configuration: Media Depth Effective Uniformity (inches) Size (mm) Coefficient (graded) sand: 40 multi- AWWA B-100 Acceptance: Conditional acceptance letter dated July 29, 2003 from CDHS. Comments: Performance report submitted dated June 11, 2003. Installations: City of Oceanside (San Luis Rey WWTP) #### Volcano #### Status-NOT YET ACCEPTED Description: Continuous wash downflow sand filter Acceptance / References: -Documentation of CDHS approval does not exist. The Recycled Water Unit has no technical data on this process. Comments: Future proposals for use of this filtration technology will require an acceptability assessment prior to approval. Installations: Boulder Creek G.C. (Santa Cruz County), Sierra Heights WWTP (Santa Clarita), Carmel Valley WWTP, Shelter Cove (Humbolt) #### Other Media Type Filters #### Fuzzy Filter Schreiber LLC Status--Accepted 100 Schreiber Drive Trussville, Alabama 35173 Description: "Fuzzy Filter"-compressible plastic filter media Upflow design Media configuration: Media Depth Effective Uniformity (inches) Size (") Coefficient Synthetic: 30 (1.25") 1.50 Plastic (variable) Media is quasi spherical, highly porous and compressible #### Acceptance / Reference: -Conditional acceptance letter date February 24, 2003 from CDHS. -Conditions of acceptance include: 1) media design specs. as noted above, 2) filtration rate not to exceed 30 gpm/ft², 3) all Title 22 installations shall have design changes as outlined by Schreiber in correspondence dated January 21, 2003 (i.e. - backwash with filtered water, wash outlet below filtered outlet, valving position alarms), 4) individual operations plans shall include recommended operational configurations (i.e. percent compression and loading rate) based on secondary quality. -Evaluated by U.C. Davis (Report dated September 1996) Comments: Evaluated at loading rates up to 30 GPM/ft²; media configuration/porosity/depth varies based on percent compression; water passes through media rather than around media. Installations: City of Yountville #### Membrane Technologies NOTE: Many of the membranes listed below were originally approved with maximum flux rates based on studies under which performance data was generated. However, references to maximum flux rates are no longer deemed necessary since they become self-limiting from a filter run and operational perspective. If operational parameters (e.g. flux, TMP) adversely impact filtration performance from a turbidity compliance or operational perspectives, process control measures will likely be necessary to reliably insure compliance. #### ZENON #### Zenon Environmental Services, Inc. 3239 Dundas Street West Oakville, Ontario L6M 4B2 (905) 465-3030 #### Cycle-Let (Thetford) #### Status--Accepted Description: Membrane ("Ultra") filtration (originally marketed as Thetford Cycle-Let); complete package unit including pretreatment, biological oxidation, membrane ultra-filtration, GAC and U.V. #### Acceptance / References: -CDHS acceptance memorandum to LARWQCB dated November 12, 1993 regarding the Water Gardens Project. -Report entitled "Evaluation of the Thetford Cycle-Let Reclamation System's Ability to Meet Title 22, prepared by Engineering-Science, dated August 1991. -Report entitled "Thetford Systems Inc. Cycle-Let Wastewater Treatment and Recycling System - Water Garden Project, Santa Monica, CA" dated July 1993 prepared by CDM Comments: Membrane approved has average pore size of .005 micron. Tested on municipal wastewater. Installations: "Water Gardens" (Santa Monica), Sony Music Campus (Santa Monica). #### ZeeWeed / Zenogem #### Status--Accepted Description: Variant of the Cycle-Let, OCP Bio-reactor / Microfiltration process #### Acceptance / References: -Conditional acceptance letter from CDHS dated August 12, 1999 -Draft Final Report "California DHS Certification Testingfor Zenon (ZeeWeed) Membrane" prepared by Montgomery Watson (1/8/99). -Final Report "Assessing the Ability of Membrane Bioreactor to Meet Existing Water Reuse Criteria (Zenon Environmental, Inc.)" prepared by Montgomery Watson (March 2001). Comments: Approval based on use of the "OCP" membranes only. Conditions of approval include: membrane integrity tests required. Tested in MBR process with high solids loading. Installations: Unknown #### ZeeWeed 1000 UF #### Status--Accepted Description: Submerged Hollow Fiber Ultrafiltration Membrane #### Acceptance / References: -Conditional acceptance letter from CDHS for T-22 compliance dated October 12, 2001 -Report entitled "California Department of Health Services Certification Testing For Zenon ZeeWeed 1000 Membrane", prepared by Montgomery Watson (June 2001). This report was prepared for demonstrating compliance with the California Surface Water Treatment Rule. Comments: Approval based on use of the hollow fiber polymer "ZeeWeed 1000 UF Membrane" with a 0.02 micron nominal pore size. Conditions of approval require membrane integrity tests required. Tested on raw surface water. Installations: Unknown #### U. S. Filter / MEMCOR STATUS--Accepted 4116 Sorrento Valley Blvd. San Diego, CA 92121 (619) 445-0578 #### Memcor Continuous Microfiltration (CMF) Description: 0.2 micron <u>Polypropylene</u> Hollow Fiber Micro- Filtration - Pressure Filtration #### Acceptance / References: - -Conditional acceptance letter from CDHS dated 1/10/2000 - -Approved under the SWTR using 0.2 micron membrane. Comments: Membrane integrity tests required. Tested on raw surface water. Installations: West Basin MWD, Orange County Water District, City of Livermore, Dublin/San Ramon SD #### Memcor Continuous Microfiltration (CMF) Description: 0.1 micron <u>Polyvinylidene Fluoride</u> (PVDF) Hollow Fiber Micro-Filtration - Pressure Filtration #### Acceptance / References: - -Conditional acceptance letter from CDHS dated 1/10/2000 - -Approved under the SWTR using 0.2 micron membrane. Comments: Membrane integrity tests required. Tested on raw surface water. Installations: West Basin MWD, Orange County Water District, City of Livermore, Dublin/San Ramon SD #### Memcor Continuous Microfiltration Submerged (CMF-S) Description: 0.2 micron <u>Polypropylene</u> Hollow Fiber Micro-Filtration - Submerged/Vacuum Filtration Acceptance / References: -Conditional acceptance letter from CDHS dated 1/10/2000 Comments: Membrane integrity tests required. Tested on raw surface water. Installations: Unknown #### Memcor Continuous Microfiltration Submerged (CMF-S) Description: 0.1 micron <u>Polyvinylidene Fluoride</u> (PVDF) Hollow Fiber Micro-Filtration - Submerged/Vacuum Filtration #### Acceptance / References: -Conditional acceptance letter from CDHS dated 1/10/2000 Comments: Membrane integrity tests required. Tested on raw surface water. Installations: Unknown #### U. S. Filter/Jet Tech Products-Memjettm STATUS--Accepted 1051 Blake Edwardsville, KS 66111 Description: 0.1 micron Polyvinylidene Fluoride (PVDF) Hollow Fiber Micro-Filtration - SBR/Vacuum Filtration Acceptance / References: -Conditional acceptance letter from CDHS dated 10/7/2002 Comments: Membrane integrity tests required. Tested in MBR process with high solids loading. Installations: Unknown #### PALL Corporation STATUS -- Accepted 25 Harbor Park Drive Port Washington, NY 11050 USA (516) 484-3600 Description: PVDF Hollow Fiber Microza Microfiltration 0.1 micron (P/N XUSV-5203) Acceptance / References: -Conditional acceptance letter from CDHS dated 1/10/2000 -Approved for compliance under the SWTR based on report entitled "California Department of Health Services Certification Testing for
Pall (Microza) Microfiltration Membrane" prepared by Montgomery-Watson (July 1999). -Performance study conducted at OCWD Water Factory 21 (SLS Report 7725) "Long-Term Testing of Pall Microza 0.1 um MF System on Secondary Effluent at Water Factory 21, Fountain Valley, CA" (September 23, 1998). Comments: Membrane integrity tests required. Tested on secondary effluent. Installations: Unknown #### PALL Corporation STATUS -- Accepted 25 Harbor Park Drive Port Washington, NY 11050 USA (516) 484-3600 Description: Microza Microfiltration using the following: (P/N USV-5203) (P/N USV-6203) (UNA-620A) Acceptance / References: -Conditional acceptance letters from CDHS dated 7/19/2004 -Approved for compliance under the SWTR Comments: Membrane integrity tests required. Tested on raw surface water. Installations: Unknown #### MITSUBISHI #### Mitsubishi International Corp. STATUS -- Accepted 333 South Hope Street West, Suite 2500 Los Angeles, CA 90071 Description: Mitsubishi Membrane Bioreactor (MBR) Sterapore HF 0.4 micron hollow fiber polyethylene Acceptance / References: -Conditional acceptance letter from CDHS dated April 23, 2001 -Report entitled "Assessing the Ability of Membrane Bioreactor to Meet Existing Water Reuse Criteria (Mitsubishi Rayon Co., Ltd.)" prepared by Montgomery-Watson (March 2001). Comments: Membrane integrity tests required. Tested in MBR process with high solids loading. Installations: Unknown #### STATUS -- Accepted #### KUBOTA Description: Kubota Membrane Bioreactor (MBR); Type 510 0.4 micron chlorinated polyethylene flat sheet membrane #### Acceptance / References: -Conditional acceptance letter from CDHS dated March 18, 2003, amended April 29, 2004 for higher flux rate. -Report entitled "Assessing the Ability of the Kubota Membrane Bioreactor to Meet Existing Water Reuse Criteria" prepared by Montgomery-Watson-Harza (February 2003). Comments: Membrane integrity tests required; Tested in MBR process with high solids loading. Installations: Unknown #### Ionics, Inc. STATUS -- Accepted 65 Grove Street Watertown, Massachusetts 02472-2882 USA (617) 926-2500 Description: Norit X-Flow Hollow Fiber Ultrafiltration 0.05 micron, Polyethersulfone Membrane #### Acceptance / References: -Conditional acceptance letter from CDHS dated 10/21/2003 -Approved for compliance under the SWTR based on report entitled "Draft Final Report, California Department of Health Services Certification Testing for Ionics UF Membrane" prepared by Montgomery-Watson (June 2001). -Performance study conducted at Gwinnett County, Georgia using secondary effluent; "Membrane Pilot and Demonstration-Scale Treatment for Water Reclamation at Gwinnett County, Georgia" (CH2M HILL, 2001). Comments: Acceptance specific to the Ionics filtration technology tested using the Norit X-Flow S225, 0.05 micron, polyethersulfone hollow fiber membrane. Membrane integrity tests required. Tested on secondary effluent. Installations: Unknown #### Cloth Filter Technologies #### AQUA AEROBIC Systems, Inc. Status--Accepted 6306 N. Alpine Rd. Rockford, IL 61130-0026 (815) 654-2501 Description: Submerged Cloth-Media Rotating Disk Filter (Utilizing the 102 needle felt fabric) #### Acceptance / References: -Conditional acceptance letter from CDHS dated June 29, 2001 and amended September 24, 2002. -Report entitled "Evaluation of the Aqua-Aerobic Systems Cloth-Media Disk Filter (CMDF) for Wastewater Recycling Applications in California" prepared by UC Davis (March 2001). -Report entitled "Evaluation of Aqua-Aerobics Systems AquaDisk Filter Technology at Orange County Water District, Fountain Valley, California" (February 25, 2000). Comments: Utilizes the "102 needle felt fabric", operates under vacuum. Conditions of acceptance: loading rate not to exceed 6 gpm/ft²; Acceptance of this technology is contingent on it being complimented with a disinfection process which is compliant with Section 60301.230 (T-22); acceptance limited to the random woven NF-102 needle felt cloth media having openings ranging from 10 to 30 microns and a thickness of 3.8 mm; influent turbidity not exceed 10 NTU more than 5-percent of the time within a 24-hour period; Operations plan shall specify minimum FTW cycle following high pressure wash based on displacement of two filtrate volumes and effluent turbidity below 2 NTU; scheduled inspections of cloth conditions; ensure adequate sludge wasting; Turbidity performance limited to Section 60301.320(a) of the Water Recycling Criteria. Installations: None known Description: Submerged Cloth-Media Rotating Disk Filter (Utilizing the PA-13 nylon pile fabric) #### Acceptance / References: -Conditional acceptance letter from CDHS dated May 6, 2002) and amended on September 24, 2002 -Report entitled "Use of PA-13 Pile Fabric, Supplement to: Evaluation of the Aqua-Aerobic Systems Cloth-Media Disk Filter (CMDF) for Wastewater Recycling Applications in California" prepared by UC Davis (February 2002). Comments: Utilizes the "PA-13 nylon pile fabric", operates under vacuum. Conditions of acceptance: loading rate not to exceed 6 gpm/ft²; Acceptance of this technology is contingent on it being complimented with a disinfection process which is compliant with Section 60301.230 (T-22); acceptance limited to the PA-13 nylon pile fabric (as tested); influent turbidity not exceed 10 NTU more than 5-percent of the time within a 24-hour period; scheduled inspections of cloth conditions; ensure adequate sludge wasting; turbidity performance limited to Section 60301.320(a) of the Water Recycling Criteria. Installations: None known Description: Submerged Fixed Cloth-Media Filter -AquaDiamond Filtration System (Utilizing the NF 102 Needle Felt or the PA-13 nylon pile fabric) Acceptance / References: -Conditional acceptance letter from CDHS dated May 12, 2004) and amended on September 24, 2002 -Design and process control report on file. Comments: Same filtration principle as the rotating disk filters noted above but differs in design and operation; Utilizes the NF 102 needle felt or the PA-13 nylon pile fabric, operates under vacuum. Conditions of acceptance: loading rate not to exceed 6 gpm/ft²; filtration process must be complimented with a disinfection process which is compliant with Section 60301.230 (T-22); acceptance limited to the NF needle Felt or the PA-13 nylon pile fabric (as tested); influent turbidity not exceed 10 NTU more than 5-percent of the time within a 24-hour period; scheduled inspections of cloth conditions; ensure adequate sludge wasting; turbidity performance limited to Section 60301.320(a) of the Water Recycling Criteria. Installations: None known #### U.S. Filter-Kruger Products Status--Accepted 401 Harrison Oaks Blvd., Suite 100 Cary, North Carolina 27513 Description: Cloth-Media Disk Filter - Hydrotech (Utilizing the PET mono-filament filter fabric) Acceptance / References: -Conditional acceptance letter from CDHS dated October 2, 2003. -Report entitled "Evaluation of the Hydrotech Filter for Compliance With Title 22 For Recycled Water Applications" prepared by Water 3 Engineering, Inc. (August 2003). Comments: Utilizes the PET mono-filament, 2:2 twill weave, 11 micron (+/-2.0) mesh opening, 523.2 (n/inch), 60 micron thickness, wt. rating of 1.48 oz./sq.yd., stabilized finish. Conditions of acceptance: loading rate not to exceed 6 gpm/ft²; Acceptance of this technology is contingent on it being complimented with a disinfection process which is compliant with Section 60301.230 (T-22); influent turbidity not to exceed 10 NTU more than 5-percent of the time within a 24-hour period; scheduled inspections of cloth conditions; Turbidity performance limited to Section 60301.320(a) of the Water Recycling Criteria. Installations: None known #### 4. DISINFECTION TECHNOLOGIES Gaseous chlorine or hypochlorite is the most commonly used disinfectant, however alternative technologies are recognized as being acceptable. On-site chlorine generators are also available for industry use. #### ULTRAVIOLET Trojan Technologies, Inc. 3020 Gore Rd. London, Ontario Canada N5V 4T7 Description: UV 4000 (Medium Pressure/ Status-Accepted** Low Intensity) UV 3000 (Low Pressure/ " ** Low Intensity) UV 3000 Plus (Low Pressure/ " *** High Output) #### Acceptance/References: - -Conditional acceptance letter from CDHS dated September 8, 1995 for UV4000. - -Conditional acceptance letter from CDHS dated July 3, 2003 for UV 3000 Plus (including modified end-of-lamp-life factor of 0.82). Amended October 30, 2003. - -"Trojan System UV4000 UV Disinfection Pilot Study. Riverside, California", May 1995 - -"Equivalency of the Trojan System UV4000 and System UV3000 in Meeting California Wastewater Reclamation Criteria at Pacifica, California", June 1994 - -"Technical Review: Ultraviolet Disinfection of Wastewater to California Wastewater Reclamation Criteria (Title 22, Division 4, Chapter 3, of the California Code of Regulations) Using Trojan Technologies' System UV4000 (High Intensity UV Lamp Technology", August 1995. Comments: Acceptance for the UV4000 conditioned on 1) continuous monitoring/recording of filter effluent turbidity (pre UV), daily coliform monitoring (disinfected effluent) and 3) provide UV dose of at least 100 mW-sec/cm² under worst operating conditions at peak daily instantaneous flow with a minimum of three banks in operation and a UV dose of at least 140 mW-sec/cm² with a minimum of four banks in operation, subject to all of the conditions indicated in the NWRI Guidelines. Installations: City of Pacifica, City of Vallejo, Central Contra Costa S.D., City of Corona, City of San Diego (South Bay WRF), Western Riverside RWF, Olivenhain WD, City of Santa Rosa - **Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated - **Acceptance granted under the December 2000 NWRI/AWWARF Guidelines. - ***Acceptance granted under the May 2003 NWRI/AWWARF Guidelines PCI-Wedeco Environmental Technologies, Inc.
Status—Accepted* One Fairfield Crescent West Caldwell, NJ 07006 #### -Specktrotherm 33-TAK UV Description: (Low pressure/High Intensity) Acceptance/References -Conditional acceptance letter dated 3-31-98 from CDHS and follow-up letter dated 5/21/99 transferring approval from Aquafine to Wedeco). -Tested at OCWD as the AWES-Spectrotherm TAK UV System Comments: Currently marketed as the PCI-Wedeco Spectrotherm 33 TAK UV System. Requires UV dose of 160 mWs/cm 2 at max. week flow, 120 mWs/cm 2 at peak flow (max. day), and an average of \geq 160 mWs/cm 2 and conform to NWRI Guidelines. Installations: Leucadia CWD(proposed) *Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated #### Wedeco - Ideal Horizons LCI-20L Status-Accepted* Description: (Low pressure/High Intensity) Model LCI-20L Acceptance/ References -Conditional acceptance letter from CDHS dated 2-23-99 for Tejon Ranch. -Report entitled "Ultraviolet Dose Bioassay of the Ideal Horizons Horizontal Lamp Disinfection System" by HydroQual, Inc. (September 1998). #### Comments: Installations: Tejon Ranch Development (I-5 @ Tejon Pass) *Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated #### Wedeco - Ideal Horizons TAK 55 #### Status-Accepted** (Low pressure/High Intensity/open channel) Description: Acceptance/References -Conditional acceptance letter dated 12-4-01 from CDHS. -Report entitled "Wedeco-Ideal Horizons Low-Pressure, High Intensity Ultraviolet Disinfection System Pilot Study at Orange County Water District" by CH2M Hill (November 2000) Comments: Installations: Unknown **Acceptance granted under the December 2000 NWRI/AWWARF Guidelines. #### Wedeco - Ideal Horizons TAK 55HP Status-Accepted*** (Low pressure/High Output/open channel) Description: TAK 55HP Acceptance/References -Conditional acceptance letter dated 11-24-03 from CDHS. -Report entitled "Wedeco Ultraviolet Technologies TAK 55HP Validation Report by Carollo Engineers (October 2003) Comments: Installations: Unknown ***Acceptance granted under the May 2003 NWRI/AWWARF Guidelines. ### Aquionics Status-Accepted* Aquionics, Inc. 21 Kenton Lands Rd. Erlanger, Ky 41018 Description: (Medium Pressure/In-line) Acceptance/Reference: -Conditional acceptance letter dated 2-28-00 from CDHS. -CH2M Hill, "Aquionics Medium Pressure, High-Intensity Ultraviolet Disinfection System Pilot Study at Orange County Water District" by CH2M Hill (May 1999) #### Comments: Installations: Unknown *Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated #### Service Systems International, Ltd. Status—Accepted* 2800 Ingleton Avenue Burnaby, B.C. Canada, V5C 6G7 #### ULTRAGUARD UV System Description: (Open Channel/Low Pressure/High Intensity/vert. lamp) #### Acceptance/Reference: -Conditional acceptance letter dated 2-1-00 from CDHS. -Report: Chen, C. L.; El Jacj, Z; Kuo, J., UV Inactivation of Bacteria and Coliphages in Tertiary Effluent Using Low-Pressure High-Intensity Lamps, November 18, 1999, County Sanitation Districts of Los Angeles County. #### Comments: Installations: Unknown *Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated #### Aquaray #### Ondeo-Degremont 2924 Emerywood Parkway P.O. Box 71390 Richmond, VA 23255-1390 #### Aquaray 40 VLS Status-Accepted*** Description: Vertical lamp/low Pressure/low intensity Acceptance: Conditional acceptance letter dated 10/24/97 from CDHS with follow-ups dated 10/23/03, 2/23/04, 4/13/04 and 10/6/03. Comments: Evaluation memo dated 4/30/97 from SDHS concerning transmittance restriction be set at >55%. Installations: Scotts Valley, Town of Windsor, Dublin/San Ramon ***Acceptance granted under the May 2003 NWRI/AWWARF Guidelines. #### UltraTech Systems 15 Kay Fries Drive Stoneypoint, NY 10980 #### Terminator Status-Accepted* Description: Vertical/Low Pressure/Low Intensity Acceptance/References -Conditional acceptance letter dated October 23, 2000 from CDHS -Report entitled "Ultraviolet Dose Bioassay of the Ultratech Systems Vertical Lamp Disinfection System (65% Transmittance)" by HydroQual, Inc. (February 2000). #### Comments: Installations: Unknown *Acceptance granted under the outdated 1993 NWRI Guidelines. Compliance with the NWRI/AWWARF Guidelines has not been demonstrated See Appendix A Alt. Tech. disk - Recycle water Technology listing9-04.doc #### APPENDIX A ## Recognized Filtration and Disinfection Technologies For Recycled Water ## CALIFORNIA DEPARTMENT OF HEALTH SERVICES REDUCTION OF VIRUS AND BACTERIA BY FILTRATION AND DISINFECTION (October 2001) Title 22 of the California Code of Regulations (Recycled Water Criteria) require extensive treatment of wastewater that is to be used for irrigation of parks and playgrounds or for spray irrigation of food crops. Recycled water for such irrigation is to be oxidized, filtered, and disinfected. Section 60301.320 defines filtered wastewater and Section 60301.230 defines disinfected tertiary recycled water. Additionally, Section 60320.5 allows for "other methods of treatment" provided they are found acceptable to the Department. Treatment equivalent to that stipulated in sections 60301.320 and 60301.230 is prescribed to greatly reduce the concentration of viable enteric viruses in wastewater. Such a reduction makes it very unlikely that a person would contaminate his hands with a virus when touching a surface wet with reclaimed water. Enteric viruses are excreted by individuals with an intestinal virus infection. They can cause incapacitating disease states in susceptible persons. Those disease states include meningitis, hepatitis, and others. ## Capability of Treatment That Sections 60301.320 and 60301.230 Cite The County Sanitation Districts of Los Angeles County (CSDLAC, determined the capability of treatment that sections 60301.320 and 60301.230 cite, to reduce the concentration of viable virus in activated sludge effluent. CSDLAC laboratory-cultured poliovirus and 150 milligrams coagulant per liter of the activated sludge effluent and passed it through pilot-scale treatment facilities comprised of a clarifier and a sand filter to meet the turbidity limits that 60301.320 section cites in the definition of filtered wastewater: turbidity shall not exceed 2 turbidity units as a daily average and shall not exceed 5 turbidity units more than five percent of the time. Filter effluent was chlorinated in a chamber with a two-hour theoretical contact period and a 90minute actual, modal contact period. Such treatment reduced the concentration of virus plaque-forming units to $1/100,000^{\text{th}}$ of the concentration in wastewater upstream from the filter, when the chlorine residual was at least 5 milligrams per liter and at least sufficient to reduce the concentration of total coliform bacteria to less than 2 per hundred milliliters. Sections 60301.320 and 60301.230 require that disinfection shall limit the concentrations of total coliform bacteria in the effluent so that the median of consecutive daily samples does not exceed 2.2 per hundred milliliters, as determined from the bacteriological results of the last seven days for which analyses have been completed. ## Equivalent Treatment By Granular Media Bed Filtration and Disinfection Section 60320.5 of Title 22 allows the regulatory agency to accept processes other than those that Sections 60301.320 and 60301.230 cite if the applicant demonstrates to the satisfaction of DHS that the other processes will assure an equal degree of DHS deems other treatment equivalent to that cited treatment. in sections 60301.320 and 60301.230 when: (1) a proponent alternative the proposed demonstrates that treatment consistently reduces the concentration of viable virus to a level 1/100,000th of the concentration of seeded virus in influent to the filter; and (2) the proponent will provide reliability features equivalent to those that Title 22 cites, and will comply with all other applicable stipulations of Title 22. Past demonstrations are sufficient to allow DHS to accept the combination of granular media bed filtration and disinfection of oxidized wastewater as equivalent to treatment that sections 60301.320 and 60301.230 cite, when the following four conditions are obtained: - (1) coagulant is added when the turbidity of the oxidized wastewater (i.e. secondary effluent) exceeds 5 NTU for more than 15 minutes (or exceeds 10 NTU at any time) upstream from the filter; - (2) the turbidity of filter effluent does not exceed a daily average of 2 NTU, 5 NTU more than 5 percent of the time, and 10 NTU at any time; - (3) the concentration of viable total coliform bacteria in the final effluent does not exceed 2.2 per hundred milliliters as a median in samples taken in seven consecutive days, and does not exceed 23 per hundred milliliters in more than one sample in a 30-day period; and - (4) the disinfection process complies with (a) or (b) below: - (a) if chlorination is used it provides a CT (chlorine concentration times modal contact time) value not less than 450 milligram-minutes per liter at all times with a modal contact time at least 90 minutes at the peak daily flow rate; or - (b) if ultraviolet light irradiation is used, the design and operation of the UV light disinfection process complies with the stipulations of the NWRI/AWWARF document cited below under the heading References Cited. #### Demonstration With Other Filtration and Disinfection Processes The particle size distribution (PSD) of secondary sewage treatment effluent filtered by a membrane, cloth, or similar medium will differ significantly from that of effluent of a media bed filter, insofar as PSD affects the granular effectiveness of the downstream disinfection process. The term "size distribution" refers to the number of
particles per milliliter in each of several specific ranges of sizes. Polycarbonate membrane laboratory filters with pore sizes of 12, 8, 5, 3, 1, and 0.1 micron can be used (Levine, et al., 1985; NCC, 1984), with minimal equipment requirements. A particle counter can be used to determine PSD for the following size ranges, in microns: 1.2 to 2, 2 to 5, 5 to 10, 10 to 20, 20 to 50, 50 to 100, 100 to 200, and larger than 200 (Stahl et al., 1994). If a filter other than a granular media bed filter is proposed to be used and the use of reclaimed water requires equivalence with treatment that section 60301.320 or 60301.230 cites, the proponent must undertake a demonstration to show DHS what operating conditions guarantee that the filter and disinfection process will consistently reduce the concentration of virus to $1/100,000^{\rm th}$ of the virus concentration in wastewater upstream from the filter and limit the concentration of total coliform bacteria to comply with concentrations that sections 60303 and 60313(b) cite. The demonstration will involve operation of the filter and disinfection process under the following conditions: - o the filter receives the type of wastewater from which recycled water is proposed to be produced; - o the range of qualities of wastewater received by the filter includes qualities that are expected to occur when recycled water is produced, and are the most challenging to the effectiveness of the filter and disinfection process (e.g., concentration of suspended solids is at the maximum); - o laboratory-grown viruses are added to the wastewater upstream from the filter; - samples are taken upstream from the filter and downstream from the disinfection process for determination of numbers of plaque-forming units of virus per volume of sample; - samples are taken of wastewater upstream and immediately downstream from the filter for determination of concentration of total suspended solids; - turbidity of the filter effluent is continuously measured by a continuous recording turbidimeter; - samples of disinfected effluent are taken for determination of the concentration of total coliform bacteria; - additionally if disinfection is by chlorination, samples are taken of wastewater upstream from the filter for determination of concentration of ammonia and samples of disinfected effluent are taken for determination of concentration of chlorine residual; - additionally if disinfection is by UV irradiation, fluid transmittance at 254 nm (% T) and flow rate of filter effluent are continuously measured and recorded; - The greatest appropriate time between backwashes, or other actions that renew filter yield or efficacy, is determined by experiment, with turbidity of filter effluent allowed to range as high as needed for economically practicable treatment (but not to exceed 2 NTU as a daily average, 5 NTU more than 5 percent of the time, or 10 NTU at any time); and A test run is comprised of one continuous operation between two consecutive backwashes (or other actions that renew filter yield or efficacy). A demonstration shall have at least three test runs during which the quality and/or flow rate of influent to the filter is most challenging for the disinfection process. Qualities most challenging to UV disinfection might include high concentration of suspended solids, high turbidity and low transmittance. Qualities most challenging to chlorine disinfection might include high concentration of suspended solids, high turbidity and high chlorine demand. If the proponent wants to propose a CT value or minimum chlorine contact time that differs from that cited above under the heading Equivalent Treatment By Granular Media Bed Filtration and Disinfection, or a UV dose that differs from what the NWRI/AWWARF Guidelines cite, the proponent shall perform as many test runes as necessary to construct a dose-response curve for virus reduction. The curve shall show the required value(s) of such parameters at which the concentration of viable viruses in the disinfected effluent is reduced to $1/100,000^{\mathrm{TH}}$ of the concentration in the influent to the filter. During each test run, viruses shall be added to wastewater in numbers sufficient to determine whether the concentration in 1/100,000th disinfected effluent is less than of concentration in wastewater upstream from the filter. viruses added to wastewater upstream from the filter shall be Fspecific bacteriophage MS2, polio virus, or other virus that is at least as resistant to disinfection as polio virus. specific bacteriophage MS2 is a strain of a specific type of virus that infects coliform bacteria that is traceable to the American Type Culture Collection (ATCC 15597B1) and is grown on lawns of E. coli (ATCC 15597). Chlorine residual in samples of chlorinated effluent taken for determination of concentrations of virus plaque-forming units and total coliform bacteria shall be neutralized with a reducing agent approved by DHS, when those samples are taken. The proponent shall submit to DHS a proposed protocol for all work to be undertaken in the demonstration. The proponent will undertake the demonstration only pursuant to a protocol DHS has approved. The demonstration must identify operating conditions that consistently achieve that virus reduction and compliance with the above-cited limits on the concentration of total coliform bacteria. The regulatory agency will cite those operating conditions and will stipulate that they will be maintained. The combination of a filtration process and a separate disinfection process provides multiple barriers to limit the concentration of viable viruses somewhat when the other malfunctions. DHS will not accept filtration alone, or disinfection alone, as complying with Title 22. #### REFERENCES CITED Levine, A.D., Tchobanoglous, G., and Asano, T., "characterization of the Size Distribution of Contaminants in Wastewater: Treatment and Reuse Implications," <u>Journal Water Pollution Control Federation</u>, July 1985, pages 805-816. NCC (Nuclepore Corporation Catalog), "Innovations in Membrane Filtration," Pleasanton, California, 1984. National Water Research Institute / American Waterworks Association Research Foundation), <u>Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse</u>, December 2000. That document is available for purchase from National Water Research Institute, P.O. Box 20865, Fountain Valley, CA 92728-0865, telephone (714) 378-3278. Stahl, J.F., Kuo, J.F., Chen, C., and Horvath, R.W., "Evaluation of Four Different Tertiary Filtration Plants for Turbidity Control", presented at $\underline{65^{\text{th}}}$ Annual Conference of Water Environment Federation, September 20-24, 1992, New Orleans (paper published in November/December 1994 issue of the Journal of the Water Environment Federation). Alt. Tech disk- Recycled Water Technology listing9-04.doc